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ABSTRACT

A simple form of the Prandtl model addressing pure katabatic flows is solved. The new analytic solution is
valid for almost any assigned eddy diffusivity K(z) and constant Prandtl number. This model assumes a one-
dimensional steady state for momentum and heat balance. Its approximate solution, obtained using the WKB
method, appears as a generalization and improvement of the classic analytic solution for the constant-K case.
It is compared favorably against a numerical solution. A comparison with observations from PASTEX, Austria
1994, shows that the new solution is much closer to the data than the constant-K solution. The dynamics revealed
with this new solution is discussed (relatively sharper near-surface profiles, their gradients, and the low-level
jet), and a suggestion toward improving boundary layer parameterizations is offered.

1. Introduction

Recent interest in glacier fluctuations, sea level rise,
and climate change has stimulated research on the at-
mospheric boundary layer over glacier and ice sheets.
For instance, estimating changes in the mass balance of
glaciers in response to climate changes requires a knowl-
edge of the structure of this layer. Recent field experi-
ments (e.g., Oerlemans and Vugts 1993; Greuell et al.
1997) have made clear that over land ice katabatic flow
is very persistent, even on small valley glaciers. Evi-
dently, the presence of katabatic flows greatly affects
the surface fluxes of momentum, heat, and moisture
(thus affecting glaciers as well). Analysis of data shows
that standard profile analysis is usually not suitable to
determine fluxes in conditions of katabatic flow (Munro
1989; Oerlemans 1998). More specifically, the analytic
model of boundary layer slope winds (e.g., Prandtl
1942; Egger 1990) cannot provide sharp near-surface
gradients that are observed (e.g., Munro 1989; Oerle-
mans 1998). Without these gradients, the calculated sur-
face fluxes are wrong. A method has to be sought in
which the coupling between dynamics and thermody-
namics (buoyancy as a driving force of the flow) is
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retained. Nappo and Rao (1987) show numerically that
a pure katabatic flow is described by the Prandtl model,
with vertically varying eddy diffusivity, in the limit of
strong stability with vanishing advection and entrain-
ment. Their and similar or more advanced higher-order
closure numerical models (e.g., Arritt and Pielke 1986;
Denby 1999) require such a fine resolution to model the
low-level jet associated with katabatic flows, that they
still remain in the research mode. Egger (1990) reviews
flow models along cooled slopes; extensions and im-
provements of the Prandtl model either go toward two-
dimensionality or numerical modeling. Weather predic-
tion and climate models usually cannot afford the re-
quired resolution for pure katabatic flows thus calling
for a parameterization, but current theories are insuffi-
cient for this task (Mahrt 1998). Here we tackle the
mentioned problem by proposing an improved analyt-
ical solution to the pure katabatic flow.

In this paper we make a contribution by designing a
1D analytic model for the vertical structure of katabatic
flow. As a starting point we use the mentioned classic
model for slope winds of Prandtl (1942), applied to the
katabatic flow over glaciers by Defant (1949). The prob-
lem is illustrated in Fig. 1 with an example of the kat-
abatic flow accompanied with three constant eddy dif-
fusion (K 5 constant) solutions. The attempt is to fit
the overall pattern observed, not a particular profile of
the tower data. First, the value of K is changed. Second,
the value of the Prandtl number (see later) is changed.
It is obvious that the constant-K model cannot reproduce
sharp near-surface wind gradients seen in the data.
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FIG. 1. A katabatic flow example. Potential temperature deficit Q
and the related wind u: 24-h observation set from PASTEX (Austria,
27 Jul 1994, 30-min mean values for every 3 h, dashed), and the
constant-K solutions (solid). A balloon sounding is shown with dash–
star curves. Diffusivity KH 5 K 5 0.06 m2 s21 for the Prandtl profile
1, and K 5 0.012 m2 s21 for the Prandtl profiles 2 and 3. Prandtl
number, Pr 5 2 for the Prandtl profiles 1 and 2, and Pr 5 4 for the
profile 3. The lapse rate g 5 3 K km21, slope a 5 20.1, surface
temperature deficit C 5 268C (see section 2a), Q0 5 273.2 K. [The
units are in 8C or m s21 (left and right, respectively) and height in
m.]

Moreover, if the temperature profile is correct, the wind
is wrong and vice versa. We shall return to this later.

The stable boundary layer (SBL) may contain the
katabatic flow. In fact, over cold down-sloping surfaces
it is the katabatic flow that often governs the SBL evo-
lution (e.g., Oerlemans and Vugts 1993). Katabatic
winds are frequently coupled with other terrain-induced
flows (Vergeiner and Dreiseitl 1987); however, we will
focus on a 1D model that is simple enough to be treated
analytically but still relatively rich in its dynamics. A
global solution will be sought for the linearized SBL
problem based on the Prandtl model (e.g., Egger 1990);
to find the potential temperature and wind profiles in a
steady state for the given terrain slope a, the background
lapse rate g and eddy diffusivity K(z):

[a, g, K(z)] → [Q(z), u(z)]. (1.1)

Since the classic constant-K approach provides in-
adequate near-surface profiles (e.g., Munro 1989; Oer-
lemans 1998), it appears natural to seek a method that
allows for some sort of meaningful K variability. First,
that would be a gradual K variability and that is at-
tempted here. A singular perturbation method, a WKB
technique, will be used (e.g., Bretherton 1969; Bender
and Orszag 1978; Gill 1982). It contains the linear math-
ematical boundary layer theory as a special case. In
practice, for an assigned gradually varying background
field, perturbed linear fields, Q and u, will be computed.
This ‘‘wave-type’’ method is seldom employed in geo-
physical boundary layer studies, probably because it has

to be assumed that background fields vary only grad-
ually. The WKB approach offers simple, elegant, and
revealing global solutions; these are usually in excellent
agreement with the related numerical solutions—pro-
vided the WKB assumption is fulfilled (Laprise 1993;
Grisogono 1995).

Apparently the problem (1.1) has not been solved yet
in a general way. Here the well-known constant-K so-
lution will be extended to any gradually varying K(z).
The new result alters the structure of the constant-K
solution [e.g., near-surface Q(z) and u(z) will no longer
change linearly] even though these are the same in the
constant-K limit. As the Ekman layer is unrealistic due
to a constant K (yielding a controversy at its top and
above with the required geostrophic balance) so is the
classic Prandtl model. Besides a theoretical insight, it
is hoped the solution provided here will be useful for
data analyses of katabatic flows and for improvements
of certain current SBL parameterizations when coupled
with other parts of the boundary layer physics. Ac-
cording to Mahrt (1998), the problem tackled here be-
longs to unsolved types of the SBL because it contains
a low-level jet.

2. The analytic model and its solution

a. The governing equation and the constant-K
solution

For the pure katabatic flow (no background flow)
there is, to a first order, a balance between the buoyancy
force and frictional dissipation (e.g., van den Broeke
1997); this implies the model of Prandtl (1942). The
governing 1D system pertaining to the Prandtl model
and its assumptions are also described in Nappo and
Rao (1987) and Egger (1990). A steady, Boussinesq,
hydrostatic, irrotational flow with no pressure gradient
is assumed and the K theory is invoked. The momentum
and thermodynamic equations for the perturbations (Q,
u) are

2g(Q/Q ) sin(a) 5 d(K du /dz)/dz (2.1a)0 M

ug sin(a) 5 d(K dQ/dz)/dz (2.1b)H

with the boundary conditions: Q(0) 5 C , 0, Q(z →
`) 5 0, u(0) 5 0, u(z → `) 5 0, where the symbols
have their usual meaning and the z axis is not vertical
but perpendicular to the surface (x axis) sloped with
angle a from the horizontal. Note that Q is potential
temperature deficit (i.e., the actual minus the back-
ground potential temperature, the latter also defining the
constant potential temperature lapse rate g) and u is
down the slope. Following Mahrt (1982), this is an equi-
librium flow type (buoyancy acceleration retarded by
turbulence stress divergence).

If KM and KH are flow independent, the Prandtl num-
ber Pr is constant, Pr [ KM/KH 5 constant, a linear
fourth-order ordinary differential equation (ODE) re-
sults. For either dependent variable (here written for Q
only) with K [ KH, one obtains:
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(4) (1) (3) (2) (1)Q 1 4K /KQ 1 f Q 1 f Q2 1

21 (s /K ) Q 5 0, (2.2a)0

where
2 2s [ gg sin (a)/(Q Pr)0 0

2 25 (buoyancy frequency) sin (a)/Pr, (2.2b)
(3) (1) (2) 2f [ K /K 1 K K /K ,1

(2) (1) 2f [ 3K /K 1 2(K /K ) , (2.2c)2

with the superscript parentheses meaning the deriva-
tives with respect to z, that is, ( ) (n) 5 dn ( )/dzn , n 5
1, 2. . . .

The constant-K solutions are revisited briefly; only
the first and the last term in (2.2a) remain. The solution
reads:

Q 5 C exp{2s z} cos(s z) (2.3a)K5const C C

u 5 2Cm exp{2s z} sin(s z), (2.3b)K5const C C

where
2 2 2 1/2s [ [gg sin (a)/(4Q PrK )] 5 s /(2K ) (2.3c)C 0 H 0 H

1/2m [ [g /(Q Prg)] . (2.3d)0

A vertical-scale height is defined as the level where the
wind ceases,

H 5 p/su50 C9 (2.3e)

in a more strict sense the katabatic flow is defined as
that confined within the depth of 1/sC (e.g., Oerlemans
1998). A compact form of (2.3a,b) is written as a di-
mensionless katabatic flow function:

F [ (Q u )C K5constant9 K5constant D-LESS (2.3f )
5 exp{2(1 1 i)s z}.C

To convert into dimensional variables multiply Q or
u (the real or imaginary part of FC and later on F) with
C or 2Cm, respectively. The main problem with the
solution (2.3) is that the near-surface profiles are linear
with height; thus, sufficient gradients and adequate mix-
ing cannot occur within the classic Prandtl model.

b. The WKB method and the outer solution

The WKB approach is justified if the background
(assigned) quantities change more gradually than the
calculated quantities. For example, if the vertical-scale
height of the katabatic wind is about 10 m, K(z) may
significantly vary only over more than that. We consider
K(z) $ 0 having arbitrarily small values at the surface
and higher up above the SBL, while reaching the max-
imum somewhere in the SBL. Now we divide the SBL
into the outer region where K(z) generally decreases
upward from its maximum, Kh, and the inner region
where K(z) increases from K(z 5 0) 5 0 to the men-
tioned maximum Kh at the level h. Here the choice of
K(z) is in agreement with O’Brien (1970); his K(z) has

been frequently used in modeling studies, see also Pielke
(1984) or Stull (1988, Pp. 209–210). The third and
fourth term in (2.2a) having f 1 and f 2 as factors are
neglected henceforth (they would be kept in a higher-
order WKB solution). Finally, the simplified governing
ODE for F [ (Q, u)D-LESS becomes

(4) (1) (3) 2F 1 4K /KF 1 [s /K] F 5 0.0 (2.4)

The outer WKB solution up to the first order for (2.4)
is mathematically equivalent to that in Grisogono (1995)
or in Berger and Grisogono (1998) for the Ekman layer.
The first-order WKB solution reads

F [ FOUT

z

21/4 1/2 21/2; [K(z)/K ] exp 2(1 6 i)(s /2) K dz .h 0 E5 6
0

(2.5)

Although the integration in (2.5) goes formally from
z 5 0, this solution is valid only from the height h, h
[ h(Kh) 5 h[max(K)]. Let us comment what (2.5) rep-
resents.

R Qualitative resemblance and generalization of the con-
stant-K solution, (2.3),

R A generalization of the vertical length-scale (2.3e):

H

1/2 21/2p 5 (s /2) K dz. (2.6)0 E
0

It turns out that (2.3e) usually provides a somewhat
different length scale H than (2.6) depending on which
K 5 constant is chosen in the former and how K(z)
decays with height in the latter. Aside from the param-
eters in s0, the form of K(z) determines H (but not
opposite). An equivalent implicit formulation of H for
the Ekman layer depth is found in Grisogono (1995).
The obtained outer solution (2.5) describes the upper
part of the SBL where the katabatic flow and K(z) decay
with height and the surface inversion matches the back-
ground stability.

c. The inner solution

The inner WKB solution must satisfy the lower
boundary conditions (giving the forcing) and smoothly
approach the outer solution (no forcing). Fortunately,
this can be fulfilled in a very simple way that has not,
up to our knowledge, been obtained before. The inner
region is characterized by K(z) } z 1 (higher-order
terms), 0 # z , h [this can be relaxed to K(z) } zp, 0
# p , 2]. Here the physical surface layer (SL) height
hs is a fraction of h(Kh), typically: hs , h ; H/3, in
accordance with O’Brien (1970), Stull (1988), etc. Thus,
the inner solution comprises the SL and corresponds to
an increasing K(z).

Since K(z) is very small near the surface, a simple
dominant balance analysis for (2.4) implies that its sec-
ond term may be neglected. Ultimately then, only the
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zero-order WKB solution for the approximate governing
ODE

(4) 2F 1 [s /K] F 5 00 (2.7)

will be considered, that is, the same governing ODE as
in the constant-K case. Although (2.7) comes out from
a systematic perturbative analysis for the WKB, it could
be obtained heuristically just by inspection. The zero-
order WKB solution to (2.7) reads

z

1/2 21/2F [ F ; exp 2(1 6 i)(s /2) K dz , (2.8)INN 0 E5 6
0

and its main properties are the following:

R resemblance to the outer solution (but without the
amplitude correction),

R stark contrast with the constant-K solution near the
surface; FINN shows rapid growth for 0 , z K h.

Clearly, if

z

21/2 1/2K } z 1 · · · ⇒ K dz } zE
0

in (2.8), then

1/2 1/2u ; Im{F } ; exp{2(sz/2) } sin[(sz/2) ]INN

1/2; (sz/2) 1 · · · (2.9a)
1/2 1/2Q ; Re{F } ; exp{2(sz/2) } cos[(sz/2) ]INN

1/2; 1 2 (sz/2) 1 · · · . (2.9b)

For small z, (2.9) grows rapidly compared to the
equivalent expansion of the constant-K solution (2.3f )
that grows only linearly with small z (note s } s0).
Consequently, FINN exhibits sharp gradients that quali-
tatively relate to the psi functions correcting the neutral
near-surface profiles toward stratification effects but all
for horizontal surfaces. Hence, (2.9) is qualitatively con-
sistent with the SL theories and observations of the
stable horizontal surface layer (e.g., Stull 1988).

d. Solution for the whole SBL

Here FOUT (the first-order WKB) and FINN (the zeroth-
order WKB) are combined in a global solution for the
whole SBL. The patching, which is a simplified, local-
ized matching (e.g., Bender and Orszag 1978), of (2.5)
and (2.8) at h 5 h(Kh) gives the solution that is the
main result of this study:

 z

1/2 21/2exp 2(1 6 i)(s /2) K dz , z # h0 E5 6 0
F ; (2.10)

z

21/4 1/2 21/2[K(z)/K ] exp 2(1 6 i)(s /2) K dz , z $ h, h 0 E5 6 0

where we will choose (1 6 i) → (1 1 i), to have the
previous relation between F and (Q, u). If K 5 constant,
then (2.10) yields the constant-K solution (2.3). If K ±
constant, cumulative effects of K(z) change the amplitude
(e.g., the inversion strength and the low-level wind max-
imum) and the phase (e.g., the inversion and wind max-
imum positions) of the solution. Above the height h, the
amplitude is slightly corrected by the [K(z)/Kh]21/4 factor
that contributes usually up to several percent of F. While
the imaginary part of the constant-K and WKB solutions
reach their maxima at p/4, the corresponding real parts
reach maxima at 3p/4. Note that p/4 will usually cor-
respond to a height within the SL where the zero-order
WKB solution is used; thus, the constant-K and the WKB
wind maxima shall typically be equal, although probably
reached at different heights. On the contrary, the other
maxima, at 3p/4, will typically conform to a height above
h where the first-order WKB solution applies, that is, the
one with the amplitude correction; hence, the constant-
K and the WKB temperature maxima generally do not
coincide. The WKB and constant-K solutions both sug-
gest somewhat different scale heights for Q and u.

The necessity of K(z) assignment and its scale require-
ment are the weaknesses of this approach. Here is no
feedback from the katabatic flow to K(z). However, some
preliminary numerical tests indicate a possibility for a
realistic and efficient time-dependent coupling between
the flow and K. This calls for a numerical approach.

e. A parameterization remark

Once F is obtained analytically, its derivative can be
calculated directly. This dF/dz relates to the momentum
and heat flux (e.g., Stull 1988). Using the roughness con-
cept and certain further assumptions, these fluxes could
be extended down to the surface providing the surface flux
parameters u* and u*. Following van der Avoird and
Duynkerke (1999), we extrapolate the momentum flux
downward linearly from the low-level jet while the heat
flux is kept constant from the jet height (Grisogono and
Oerlemans 2001). These parameters, u* and u*, are es-
sential for any boundary layer and they could be used, for
example, for estimating changes in the mass balance of
glaciers (important for climate monitoring).
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FIG. 2. Dimensionless idealized katabatic flow profiles of Q(z) and
u(z), left and right, from the proposed solution (2.10) vs the constant-
K and numerical solutions (2.3), dashed, dot–dashed, and solid, re-
spectively. Here K 5 KH (also solid) is of an O’Brien type, with the
maximum of 0.25 m2 s21 at h 5 20 m, and is not normalized. The
constant-K solution is based on 0.3 max[K(z)] 5 0.075 m2 s21, Pr 5
1.1 (a larger Pr deepens the wind profile). The Q and u are normalized
by | C | and max(u), respectively.

FIG. 3. Data comparison for Q (potential temperature deficit) and
u (katabatic wind) among the WKB solution (solid) and the obser-
vations (dashed and dash–star), with the constant-K solution (dot–
dashed) from Fig. 1. The generalized O’Brien K(z) is used, Eq. (3.1),
with max[K(z)] 5 0.30 m2 s21 at h 5 30 m; other parameters: g 5
3 K km21, a 5 20.1, C 5 268C, Pr 5 2 [as in Fig. 1 with profile
1 having K 5 0.2 max(K(z))]. [The units are 8C or m s21 (left and
right, respectively) and height in m.]

3. Examples

First, an idealized example is briefly discussed to gain
more insight into the new solution (2.10). Second, a
comparison with the real katabatic flow, introduced in
Fig. 1, is given. A comparison among our WKB solu-
tion, a numerical one, and the constant-K solution is
shown in Fig. 2. The best choice for the constant-K value
seems to be around 0.3 max[K(z)], less than the mean
K averaged over H, provided K(0) 5 K(`) 5 0. The
numerical solution1 should be the most accurate one.
The mentioned properties of the WKB solution are re-
vealed: the stronger and sharper near-surface inversion
and the wind maximum occurring at a lower level. It
also agrees well with the numerical solution. If K 5
constant is decreased further (to approximate the near-
surface gradients), the related SBL becomes too thin.
The third-order polynomial K(z) 5 P3(z) by O’Brien
(1970) is often used to model eddy diffusivity (Pielke
1984; Stull 1988). It is generalized here into a linear-
exponential function that, if expanded for small z, ap-
proximates the O’Brien P3(z). Hence, the assumed K(z)
profile is

2K(z) 5 constant z exp{20.5(z/h) }. (3.1)

This K(z) is used for its analytical tractability, but a
couple of others are tried too, like K ; z(1 2 z/H)2,
and similar results are obtained. The PASTEX dataset
is used to test the new solution. The experiment took

1 The original system (2.1) with (3.1) is solved as a time-dependent
problem relaxed to its steady state. The third-order Adams–Bashforth
scheme centered in space is used.

place on the Pasterze glacier, Austria, in the summer of
1994 (e.g., van den Broeke 1997; Greuell et al. 1997;
Oerlemans 1998). The glacier surface melting guaran-
tees a simple lower boundary condition, that is, constant
surface temperature.

Figure 3, similar to Fig. 1 but now with the WKB
solution included, displays the comparison. The other
data also suggests clear examples of katabatic flows with
insignificant background or some valley flow (not
shown, see, e.g., van den Broeke 1997). Based on the
data and after several trials, the input is: g 5 3 K km21,
a 5 20.1, C 5 268C, Pr 5 2, Q0 5 273.2 K, max[K(z)]
5 0.30 m2 s21 at h 5 30 m. Note in Fig. 3 the low-
level mixing and the wind maximum around 5-m height,
respectively, present in the data and the new WKB so-
lution; also, the near-surface inversion strength and its
location are captured reasonably well. The observed ex-
treme values, their positions, and the overall shapes
(e.g., the upper part of the low-level jet) are well sim-
ulated with the new but not with the constant-K solution.

4. Concluding remarks

To understand the coupling between the atmosphere and
cool, inclined surfaces, we must better understand the kat-
abatic flow. An analytic step toward this coupling is at-
tempted here. To summarize, the Prandtl model for kat-
abatic flows is solved for gradually varying K(z) and con-
stant but arbitrary Prandtl numbers. The new steady-state
solution, obtained with the WKB method and also checked
numerically, is a natural generalization of the known con-
stant-K solution, and it carries on a more realistic dynam-
ics. A comparison with observations from PASTEX, Aus-
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tria, 1994, shows that the new solution resembles the data
much better than the constant-K solution.

The proposed solution has its structure similar to the
constant-K solution. Essentially, the difference with the
constant-K solution can be summarized in two points:
1) the solution includes an integral, inherent to the WKB
method, involving K(z) instead of a fixed K value, and
2) the solution consists of two parts, derived with the
same technique (WKB) that are easily combined. Hence,
the relative simplicity of the new solution results while
gaining on the dynamics appreciably.

A drawback of our approach is a prescription of K(z)
instead of having K as a function of the katabatic flow,
K(Q, u). That is why this study belongs to linear analytic
modeling, that is, midway to nonlinear (and almost ex-
clusively) numerical modeling. Another critical point is
the way of prescribing K(z). The WKB method makes
a restriction on the allowed background variability, that
is, K(z) may vary only on the scale that is larger than
that for Q and u.

Following Mahrt (1998) and van der Avoird and
Duynkerke (1999), to describe the SBL with a katabatic
flow, it is essential to represent its low-level jet properly.
The proposed solution does that well thus offering a new
possibility for flux estimations. Suggestions for a new SBL
parameterization might emerge after including the rough-
ness concept and other parts of the surface physics, for
example, the surface energy balance. By prescribing K(z
5 0) → K(z0) [ K* . 0, (a new lower boundary value
for K at the roughness length z0), the WKB solution would
be suited for such a coupling. The amplitude correction
for the inner solution, if desired, might be of a type

1/4 2 1/4 1/4(K /K) {1 1 [K /(K K )] 2 (K/K ) }.h h* *
Thus, a sound surface flux parameterization scheme
would be coupled by merely giving an appropriate K*.
Preliminary results for the surface momentum flux,
K*(du/dz) | 0 are encouraging. Those calculations are
much needed for understanding of air–ice interactions
(e.g., Kuhn 1979; Oerlemans 1998), improving numerical
model parameterizations, etc. Also left for the future is
a more systematic data comparison throughout the SBL.
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